In aging muscle, fibroblast growth factor 2 was found to be continuously awakening dormant stem cells for no reason. The stem cell supply was observed to deplete over time, meaning that an insufficient number were available when they were really needed. As a result of this, muscle regeneration ability was impaired. The researchers discovered that using a drug called SU5402 that inhibits fibroblast growth factor 2 can prevent muscle stem cell decline in aging mice. Treating the elderly rodents with this drug increased their ability to repair muscle tissue.
Saturday, February 2, 2013
Hope for Drug to Reduce Old-Age-Related Muscle Wasting
In aging muscle, fibroblast growth factor 2 was found to be continuously awakening dormant stem cells for no reason. The stem cell supply was observed to deplete over time, meaning that an insufficient number were available when they were really needed. As a result of this, muscle regeneration ability was impaired. The researchers discovered that using a drug called SU5402 that inhibits fibroblast growth factor 2 can prevent muscle stem cell decline in aging mice. Treating the elderly rodents with this drug increased their ability to repair muscle tissue.
Sunday, January 20, 2013
Modulators of Protein–Protein Interactions
Attempts at generating small molecule modulators of PPIs have been largely unsuccessful by adopting existing chemical techniques. This leads us to believe that we need to identify novel chemical space that can leverage the flat and expansive surfaces of PPI, which would in turn provide an effective binding for small molecules. However, pharmaceutical companies are rather unwilling to add compounds containing multiple rings, multiple stereocenters that are highly complex, into their corporate collection as it does not align with their immediate short-term business goals.
Heterocyclic
compounds
(aromatic, largely flat and hydrophobic)
|
+ |
Natural products
(rich in sp2 bonds)
|
= |
Natural Product Inspired
(New Chemical toolbox) |
Tuesday, April 27, 2010
Kinase Inhibitors: beyond Oncology
Monday, June 29, 2009
GABA receptors as RA and Pain Targets? The Missing Link

Kelley et al. proposed a hypothesis for an inefficient GABA signaling system that resulted in unchecked pro-inflammatory cytokine production via the p38 MAP kinase pathway. p38 is a kinase target that regulates the production of inflammatory cytokines TNF, IL-1, IL-6, and PGE2. TNF, IL-1, and IL-6 are well-validated cytokines for controlling inflammation in rheumatoid arthritis (RA), and PGE2 is an essential mediator for inflammatory pain. However, most of the p38 projects failed to deliver drugs due to CNS toxicity. Are these CNS side effects linked to GABA?
The research team led by Ulrich Zeilhofer used genetically altered mice in experiments to target the GABA receptors that control spinal pain relay. They showed that the non-sedative benzodiazepine ligand L- 838417 (a GABA receptor ligand) is highly effective against inflammatory and neuropathic pain. Clomethiazole edisilate is a drug that acts on GABA receptor, which inhibits the p38 MAPK too. This small molecule does not have other p38 inhibitors' structural features, which seems to support this hypothesis. The task is to find which subtype of GABA responsible for the chronic pain. However, no direct link has been reported between GABA and p38 MAPK. The role of GABA in RA and pain development will encourage further integration of Immunology in clinical neuroscience. These findings may provide a rational basis for developing subtype-selective GABAergic drugs to treat RA and chronic pain.
Saturday, March 14, 2009
Are Protein Kinases Drug Targets?
Kinases catalyze the transfer of phosphate groups from phosphate-donating molecules (like ATP) to other molecules. They have been intensively investigated as drug targets for many years. Around 20-25% of the druggable genome consists of kinases, and this target accounts for 20-30% of many companies' drug discovery programs.

Several protein kinase inhibitors have been approved by FDA and available in the market which includes Tykerb®, Sprycel®, Sutent®, Nexavar®, Tarceva®, Iressa®, and Gleevec®. Many other kinase inhibitors are currently undergoing clinical development. This accelerated the research and development in this area, reflecting the number of search results for 'kinase inhibitors'. Sci-finder keyword search resulted in 1281 patents, which is filed in 2007 alone. Drug and Market Development’s (D&MD) report (2005) shows that kinase targeted therapies growing from $12.7 billion in 2005 to $58.6 billion in 2010.

So what is the problem with kinases? The lack of selectivity for targeting a specific kinase is the issue due to the similarity of other kinase targets. For example, the natural product substrate Staurosporine hits almost every kinase out there will be gratuitously toxic. However, the real problem with kinase inhibitors is the toxic outcomes may result from tissue distribution of orally administered kinase inhibitors.
Kinases are drug targets. But, difficult ones.
Saturday, July 26, 2008
The making of hERG free molecules (The Role of Fluorine)


Saturday, March 8, 2008
The Histamine H4 Receptor: Drug Discovery in the Post-genomic Era
